淺談電源模塊設計分析(上)
發布時間:2019-07-31 11:23:26來源:
圖1,電源供應器
采用電源模塊的優點
目前不同的供應商在市場上推出多種不同的電源模塊,而不同產品的輸入電壓、輸出功率、功能及拓撲結構等都各不相同。采用電源模塊可以節省開發時間,使產品可以更快推出市場,因此電源模塊比集成式的解決方案優勝。電源模塊還有以下多個優點:
● 每一模塊可以分別加以嚴格測試,以確保其高度可靠,其中包括通電 測試,以便剔除不合規格的產品。相較之下,集成式的解決方案便較難測試,因為整個供電系統與電路上的其他功能系統緊密聯系一起。
● 不同的供應商可以按照現有的技術標準設計同一大小的模塊,為設計電源供應器的工程師提供多種不同的選擇。
● 每一模塊的設計及測試都按照標準性能的規定進行,有助減少采用新技術所承受的風險。
● 若采用集成式的解決方案,一旦電源供應系統出現問題,便需要將整塊主機板更換;若采用模塊式的設計,只要將問題模塊更換便可,這樣有助節省成本及開發時間。
容易被忽略的電源模塊設計問題
雖然采用模塊式的設計有以上的多個優點,但模塊式設計以至板上直流/直流轉換器設計也有本身的問題,很多人對這些問題認識不足,或不給予足夠的重視。以下是其中的部分問題:
● 輸出噪音的測量;
● 磁力系統的設計;
● 同步降壓轉換器的擊穿現象;
● 印刷電路板的可靠性。
這些問題會將在下文中一一加以討論,同時還會介紹多種可解決這些問題的簡單技術。
輸出噪音的測量技術
所有采用開關模式的電源供應器都會輸出噪音。開關頻率越高,便越需要采用正確的測量技術,以確保所量度的數據準確可靠。量度輸出噪音及其他重要數據時,可以采用圖2所示的 Tektronix 探針探頭 (一般稱為冷噴嘴探頭),以確保測量數字準確可靠,而且符合預測。這種測量技術也確保接地環路可減至比較小。
圖2,測量輸出噪音數字
進行測量時我們也要將測量儀表可能會出現傳播延遲這個因素計算在內。大部分電流探頭的傳播延遲都大于電壓探頭。因此必須同時顯示電壓及電流波形的測量便無法確保測量數字的準確度,除非利用人手將不同的延遲加以均衡。
電流探頭也會將電感輸入電路之內。典型的電流探頭會輸入 600nH 的電感。對于高頻的電路設計來說,由于電路可承受的電感不能超過1mH,因此,經由探頭輸入的電感會影響 di/dt 電流測量的準確性,甚至令測量數字出現很大的誤差。若電感器已飽和,則可采用另一更為準確的方法測量電流量,例如,我們可以測量與電感器串行一起的小型分路電阻的電壓。
磁學的設計
磁心是否可靠是另一個經常被人忽略的問題。大部分輸出電感器都采用鐵粉磁心,因為鐵粉是成本比較低的物料。鐵粉磁心的成份之中大約有 95% 屬純鐵粒,而這些鐵粉粒利用有機膠合劑粘合一起。這些膠合劑也將每一鐵粉粒分隔,使磁心內外滿布透氣空間。
鐵粉是構成磁心的原材料,但鐵粉含有小量的雜質如錳及鉻,而這些雜質會影響磁心的可靠性,影響程度視乎所含雜質的數量。我們可以利用光譜電子顯微鏡 (SEM) 仔細查看磁心的截面,以便確定雜質的相對分布情況。磁心是否可靠,關鍵在于材料是否可以預測以及其供應是否穩定可靠。
若鐵粉磁心長期處于高溫環境之中,磁心損耗可能會增加,而且損耗一旦增多,便永遠無法復原,因為有機膠合劑出現份子分解,令渦流損耗增加。這種現象可稱為熱老化,比較后可能會引致磁心出現熱失控。
磁心損耗的大小受交流電通量密度、操作頻率、磁心大小及物料類別等多個不同因素影響。以高頻操作為例來說,大部分損耗屬渦流損耗。若以低頻操作,磁滯損耗反而是比較大的損耗。
渦流損耗會令磁心受熱,以致效率也會受影響而下跌。產生渦流損耗的原因是以鐵磁物質造成的物體受不同時間的不同磁通影響令物體內產生循環不息的電流。我們只要選用一片片的鐵磁薄片而非實心鐵磁作為磁心的物料,便可減低渦流損耗。例如,以磁帶繞成的 Metglas 便是這樣的一種磁心。其他的鐵磁產品供應商如 Magnetics 也生產以磁帶繞成的磁心。
Micrometals 等磁心產品供應商特別為設計磁性產品的工程師提供有關磁心受熱老化的比較新資料及計算方式。采用無機膠合劑的鐵粉磁心不會有受熱老化的情況出現。市場上已有這類磁心出售,Micrometals 的 200C 系列磁心便屬于這類產品。